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In the following, we provide the technical details concerning: 

(A) The ultrafast fiber laser model used to numerically confirm the resonant excitation of 

soliton molecules observed in experiments. 

(B) The Duffing model and the fitting of the Backbone curve of soliton molecules. 
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(A) The ultrafast fiber laser model used to numerically confirm the resonant excitation 

of soliton molecules observed in experiments 

 

We employ the generalized nonlinear Schrödinger equation (NLSE) to numerically reproduce 

the soliton molecule dynamics observed within the ultrafast fiber laser, aligning with the 

experimental findings: 
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Where term A represents the field envelope, z is the propagation coordinate, and τ corresponds 

to the fast time in the reference frame moving with the pulse. The parameters related to fiber 

dispersion and nonlinearity are selected from the Corning SMF-28 and Liekki Er 110-4. The 

saturated gain of the erbium-doped fiber with a gain bandwidth of 50 nm is defined as g = 

g0/(1+∫|A|2dτ/Esat), where Esat is the saturation energy. For small-signal gain coefficient g0, we 

apply a straightforward sinusoidal modulation g0 = g0s(1+Mfsin(2πfRts), where Rts is the laser 

roundtrips and g0s refers to the small-signal gain coefficient corresponding to the initial 

stationary soliton molecules. Mf is the modulation depth, and f is the driving frequency.  

A power-dependent transmittance function is adopted to model the ideal fast saturable 

absorber (SA) effect T = 1- αns-q0(1+P/Psat)
-1, where q0 = 35% is the modulation depth, αns = 8% 

is the non-saturable loss, P = |A|2 is instantaneous power, and Psat =50W is saturation power. In 

the simulation, the soliton molecule state with exceptionally stable mode-locking, characterized 

by extremely weak variations of intrapulse separation and energy fluctuations (see Fig. S1), is 

used as the initial condition. By keeping all other parameters constant and varying only the 

modulation depth Mf, we investigate the nonlinear response of the intrapulse separation of 

soliton molecules under different driving strengths. 

 

Figure S1. Stability monitoring of the stationary soliton molecule (without modulation). The black curve shows the 

variation in intrapulse separation, while the red curve represents the variation in pulse energy, both demonstrating 

excellent stability. 
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(B) The Duffing model and fitting the Backbone curve of Soliton Molecules 

 

The Duffing equation is widely used to describe phenomena such as resonance frequency shifts, 

bifurcations, and hysteresis in nonlinear systems, making it fundamental for understanding the 

dynamics of systems ranging from mechanical resonators to optical systems: 
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where x(t) represents the displacement of the oscillator from its equilibrium position. meff is the 

effective mass, ω0 is the eigenfrequency, ζ is the linear damping coefficient. The external driving term 

is F=F0cos(ωt). The nonlinear term k3x
3 represents the cubic nonlinear stiffness (Duffing 

nonlinearity). Using a slowly varying amplitude r(t) and phase representation φ(t) for the 

displacement x(t): 
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By substituting Equation S2 into the equation of motion and applying the method of averaging 

to eliminate the fast-oscillating terms. Essentially, assuming that r(t) and φ(t) vary much more 

slowly than the oscillation period 2π/ω, allowing us to average over one oscillation cycle: 
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To find the steady-state solution, we set 0,  0r = = and eliminate φ, and the equation of the 

amplitude r could be obtained: 
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Considering that the cubic nonlinearity coefficient k3 is small, we can approximate the frequency shift 

due to the amplitude r. This gives:  
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Equation S5 shows that the resonance frequency ω depends on the oscillation amplitude r, and 

is applied to the nonlinear fitting of the Backbone curve for soliton molecules. In this case, k3, 

meff, and ω0 are constants, while r corresponds to the oscillation amplitude of the intrapulse 

separation of soliton molecules. 

 


